Grammar of data wrangling

Data Science in a Box

datasciencebox.org

Grammar of data wrangling

A grammar of data wrangling...

... based on the concepts of functions as verbs that manipulate data frames

- select: pick columns by name
- arrange: reorder rows
- slice: pick rows using index(es)
- filter: pick rows matching criteria
- distinct: filter for unique rows
- mutate: add new variables
- summarise: reduce variables to values
- group_by: for grouped operations
- ... (many more)

Rules of dplyr functions

- First argument is *always* a data frame
- Subsequent arguments say what to do with that data frame
- Always return a data frame
- Don't modify in place

Data: Hotel bookings

- Data from two hotels: one resort and one city hotel
- Observations: Each row represents a hotel booking
- Goal for original data collection: Development of prediction models to classify a hotel booking's likelihood to be cancelled (Antonia et al., 2019)

hotels <- read_csv("data/hotels.csv")</pre>

Source: TidyTuesday

First look: Variables

names(hotels)

- ## [1] "hotel"
- ## [2] "is_canceled"
- ## [3] "lead time"
- ## [4] "arrival_date_year"
- ## [5] "arrival_date_month"
- ## [6] "arrival_date_week_number"
- ## [7] "arrival_date_day_of_month"
- ## [8] "stays_in_weekend_nights"
- ## [9] "stays_in_week_nights"
- ## [10] "adults"
- ## [11] "children"
- ## [12] "babies"
- ## [13] "meal"
- ## [14] "country"
- ## [15] "market_segment"
- ## [16] "distribution_channel"
- ## [17] "is_repeated_guest"
- ## [18] "previous_cancellations"

Second look: Overview

glimpse(hotels)

- ## Rows: 119,390 ## Columns: 32 ## \$ hotel ## \$ is canceled ## \$ lead time ## \$ arrival date year ## \$ arrival date month ## \$ arrival date week number ## \$ arrival date day of month ## \$ stays in weekend nights ## \$ stays in week nights ## \$ adults ## \$ children ## \$ babies ## \$ meal ## \$ country ## \$ market segment
- ## \$ distribution_channel

<chr> "Resort Hotel", "Resort ~ <dbl> 0, 0, 0, 0, 0, 0, 0, ~ <dbl> 342, 737, 7, 13, 14, 14,~ <dbl> 2015, 2015, 2015, 2015, ~ <chr> "July", "July", "July", ~ <dbl> 27, 27, 27, 27, 27, 27, ~ <dbl> 1, 1, 1, 1, 1, 1, 1, ~ <dbl> 0, 0, 0, 0, 0, 0, 0, ~ <dbl> 0, 0, 1, 1, 2, 2, 2, 2, ~ <dbl> 2, 2, 1, 1, 2, 2, 2, 2, ~ <dbl> 0, 0, 0, 0, 0, 0, 0, ~ <dbl> 0, 0, 0, 0, 0, 0, 0, 0, ~ <chr> "BB", "BB", "BB", "BB", ~ <chr> "PRT", "PRT", "GBR", "GB~ <chr> "Direct", "Direct", "Dir~ <chr> "Direct", "Direct", "Dir~

• • •

View only lead_time (number of days between booking and arrival date):

select(hotels, lead_time)

A tibble: 119,390 x 1 ## ## lead time ## <dbl> ## 1 342 ## 2 737 ## 3 7 ## 4 13 ## 5 14 ## 6 14 ## # ... with 119,384 more rows

select(
hotels,		
<pre>lead_time</pre>		
)		
-		

Start with the function (a verb):
 select()

select(
hotels,	
lead_time	
)	

- Start with the function (a verb):
 select()
- First argument: data frame we're working with , hotels

select(
hotels,		
<pre>lead_time</pre>		
)		

- Start with the function (a verb):
 select()
- First argument: data frame we're working with , hotels
- Second argument: variable we want to select, lead_time

<pre>select(hotels, lead_time)</pre>		

٨S

##	#	A t	ibble:	: 119,390	9 x	1	
##		lead	d_time	ē			
##			<dbl:< td=""><td>></td><td></td><td></td><td></td></dbl:<>	>			
##	1		342	2			
##	2		737	7			
##	3		-	7			
##	4		13	3			
##	5		14	1			
##	6		14	1			
##	#	• • •	with	119,384	mor	re	roi

- Start with the function (a verb):
 select()
- First argument: data frame we're working with , hotels
- Second argument: variable we want to select, lead_time
- Result: data frame with 119390 rows and 1 column

dplyr functions always expect a data frame and always yield a data frame.

select(hotels, lead_time)

##	#	A tił	oble:	119,390	Эх	1	
##		lead	_time				
##		•	<dbl></dbl>				
##	1		342				
##	2		737				
##	3		7				
##	4		13				
##	5		14				
##	6		14				
##	#	· · · · ·	with :	119,384	mor	re	rows

Select multiple columns

View only the hotel type and lead_time:

Select multiple columns

View only the hotel type and lead_time:

select(hotels, hotel, lead_time)

##	#	A tibble: 119,39	0 x 2
##		hotel lea	d_time
##		<chr></chr>	<dbl></dbl>
##	1	Resort Hotel	342
##	2	Resort Hotel	737
##	3	Resort Hotel	7
##	4	Resort Hotel	13
##	5	Resort Hotel	14
##	6	Resort Hotel	14
##	#	with 119,384	more row

Select multiple columns

View only the hotel type and lead_time:

select(hotels, hotel, lead_time)

##	#	A tibble: 119,396	0 x 2
##		hotel lead	d_time
##		<chr></chr>	<dbl></dbl>
##	1	Resort Hotel	342
##	2	Resort Hotel	737
##	3	Resort Hotel	7
##	4	Resort Hotel	13
##	5	Resort Hotel	14
##	6	Resort Hotel	14
##	#	with 119,384	more rows

What if we wanted to select these columns, and then arrange the data in descending order of lead time?

Data wrangling, step-by-step

Select:

hotels %>%
 select(hotel, lead_time)

##	#	A tibble: 119,390 x 2
##		hotel lead_time
##		<chr> <dbl></dbl></chr>
##	1	Resort Hotel 342
##	2	Resort Hotel 737
##	3	Resort Hotel 7
##	4	Resort Hotel 13
##	5	Resort Hotel 14
##	6	Resort Hotel 14
##	#	with 119,384 more rows

Data wrangling, step-by-step

Select:

hotels %>%
 select(hotel, lead_time)

##	#	A tibble: 119,390 x 2
##		hotel lead_time
##		<chr> <dbl></dbl></chr>
##	1	Resort Hotel 342
##	2	Resort Hotel 737
##	3	Resort Hotel 7
##	4	Resort Hotel 13
##	5	Resort Hotel 14
##	6	Resort Hotel 14
##	#	with 119,384 more row

Select, then arrange:

hotels %>%
 select(hotel, lead_time) %>%
 arrange(desc(lead_time))

##	#	A tibble: 119,39	0 x 2
##		hotel lea	d_time
##		<chr></chr>	<dbl></dbl>
##	1	Resort Hotel	737
##	2	Resort Hotel	709
##	3	City Hotel	629
##	4	City Hotel	629
##	5	City Hotel	629
##	6	City Hotel	629
##	#	with 119,384	more row

In programming, a pipe is a technique for passing information from one process to another.

In programming, a pipe is a technique for passing information from one process to another.

 Start with the data frame hotels, and pass it to the select() function,

ot	els %>%	
S	elect(hotel, lead_time)	%>%
a	<pre>rrange(desc(lead_time))</pre>	
: #	A tibble: 119,390 x 2	
ŧ	hotel lead_time	1
ŧ	<chr>> <dbl></dbl></chr>	
1	Resort Hotel 737	,
‡ 2	Resort Hotel 709)
\$ 3	City Hotel 629	1
⊧ 4	City Hotel 629)
\$ 5	City Hotel 629)
ŧ 6	City Hotel 629	1
ŧ #	with 119,384 more	rows

In programming, a pipe is a technique for passing information from one process to another.

- Start with the data frame hotels, and pass it to the select() function,
- then we select the variables hotel and lead_time,

<pre>select(hotel, lead_time) %>%</pre>	
<pre>arrange(desc(lead_time))</pre>	

##	#	A tibble: 119,390	3 x 2
##		hotel lead	d_time
##		<chr></chr>	<dbl></dbl>
##	1	Resort Hotel	737
##	2	Resort Hotel	709
##	3	City Hotel	629
##	4	City Hotel	629
##	5	City Hotel	629
##	6	City Hotel	629
##	#	with 119,384	more row

In programming, a pipe is a technique for passing information from one process to another.

- Start with the data frame hotels, and pass it to the select() function,
- then we select the variables hotel and lead_time,
- and then we arrange the data frame by lead_time in descending order.

<pre>hotels %>% select(hotel, lead_time) %>%</pre>	
<pre>arrange(desc(lead_time))</pre>	

##	#	A tibble: 119,390) x 2
##		hotel lead	
##		<chr></chr>	<dbl></dbl>
##	1	Resort Hotel	737
##	2	Resort Hotel	709
##	3	City Hotel	629
##	4	City Hotel	629
##	5	City Hotel	629
##	6	City Hotel	629
##	#	with 119,384	more row

The pipe operator is implemented in the package **magrittr**, though we don't need to load this package explicitly since **tidyverse** does this for us.

How does a pipe work?

 You can think about the following sequence of actions - find keys, unlock car, start car, drive to work, park.

How does a pipe work?

- You can think about the following sequence of actions find keys, unlock car, start car, drive to work, park.
- Expressed as a set of nested functions in R pseudocode this would look like:

park(drive(start_car(find("keys")), to = "work"))

How does a pipe work?

- You can think about the following sequence of actions find keys, unlock car, start car, drive to work, park.
- Expressed as a set of nested functions in R pseudocode this would look like:

park(drive(start_car(find("keys")), to = "work"))

• Writing it out using pipes give it a more natural (and easier to read) structure:

```
find("keys") %>%
   start_car() %>%
   drive(to = "work") %>%
   park()
```


A note on piping and layering

 %>% used mainly in dplyr pipelines, we pipe the output of the previous line of code as the first input of the next line of code

A note on piping and layering

- %>% used mainly in dplyr pipelines, we pipe the output of the previous line of code as the first input of the next line of code
- + used in ggplot2 plots is used for "layering", we create the plot in layers, separated by +

×

hotels +
 select(hotel, lead_time)

Error in select(hotel, lead_time): object 'hotel' not found

\checkmark

• • •

```
hotels %>%
  select(hotel, lead_time)
```

##	#	A tibble	: 119,390	x 2
##		hotel	lead_	_time
##		<chr></chr>	<	dbl>
##	1	Resort H	otel	342
##	2	Resort H	otel	737
##	3	Resort He	otel	7

ggplot2

×

```
ggplot(hotels, aes(x = hotel, fill = deposit_type)) %>%
geom_bar()
```

```
## Error in `validate_mapping()`:
## ! `mapping` must be created by `aes()`
## Did you use %>% instead of +?
```

\checkmark

```
ggplot(hotels, aes(x = hotel, fill = deposit_type)) +
  geom_bar()
```


Code styling

Many of the styling principles are consistent across %>% and +:

- always a space before
- always a line break after (for pipelines with more than 2 lines)

ggplot(hotels,aes(x=hotel,y=deposit_type))+geom_bar()

ggplot(hotels, aes(x = hotel, y = deposit_type)) +
geom_bar()

