
Data classes

Data Science in a Box
datasciencebox.org

https://datasciencebox.org/

Data classes

datasciencebox.org

https://datasciencebox.org/

Data classes
We talked about types so far, next we'll introduce the concept of classes

Vectors are like Lego building blocks

datasciencebox.org

https://datasciencebox.org/

Data classes
We talked about types so far, next we'll introduce the concept of classes

Vectors are like Lego building blocks
We stick them together to build more complicated constructs, e.g. representations of data

datasciencebox.org

https://datasciencebox.org/

Data classes
We talked about types so far, next we'll introduce the concept of classes

Vectors are like Lego building blocks
We stick them together to build more complicated constructs, e.g. representations of data
The class attribute relates to the S3 class of an object which determines its behaviour

You don't need to worry about what S3 classes really mean, but you can read more
about it here if you're curious

datasciencebox.org

https://adv-r.hadley.nz/s3.html#s3-classes
https://datasciencebox.org/

Data classes
We talked about types so far, next we'll introduce the concept of classes

Vectors are like Lego building blocks
We stick them together to build more complicated constructs, e.g. representations of data
The class attribute relates to the S3 class of an object which determines its behaviour

You don't need to worry about what S3 classes really mean, but you can read more
about it here if you're curious

Examples: factors, dates, and data frames

datasciencebox.org

https://adv-r.hadley.nz/s3.html#s3-classes
https://datasciencebox.org/

Factors
R uses factors to handle categorical variables, variables that have a fixed and known set of
possible values

x <- factor(c("BS", "MS", "PhD", "MS"))
x

[1] BS MS PhD MS
Levels: BS MS PhD

datasciencebox.org

https://datasciencebox.org/

typeof(x)

[1] "integer"

class(x)

[1] "factor"

Factors
R uses factors to handle categorical variables, variables that have a fixed and known set of
possible values

x <- factor(c("BS", "MS", "PhD", "MS"))
x

[1] BS MS PhD MS
Levels: BS MS PhD

datasciencebox.org

https://datasciencebox.org/

More on factors
We can think of factors like character (level labels) and an integer (level numbers) glued
together

glimpse(x)

Factor w/ 3 levels "BS","MS","PhD": 1 2 3 2

as.integer(x)

[1] 1 2 3 2

datasciencebox.org

https://datasciencebox.org/

Dates
y <- as.Date("2020-01-01")
y

[1] "2020-01-01"

typeof(y)

[1] "double"

class(y)

[1] "Date"

datasciencebox.org

https://datasciencebox.org/

More on dates
We can think of dates like an integer (the number of days since the origin, 1 Jan 1970) and an
integer (the origin) glued together

as.integer(y)

[1] 18262

as.integer(y) / 365 # roughly 50 yrs

[1] 50.03288

datasciencebox.org

https://datasciencebox.org/

typeof(df)

[1] "list"

class(df)

[1] "data.frame"

Data frames
We can think of data frames like like vectors of equal length glued together

df <- data.frame(x = 1:2, y = 3:4)
df

x y
1 1 3
2 2 4

datasciencebox.org

https://datasciencebox.org/

Lists
Lists are a generic vector container vectors of any type can go in them

l <- list(
 x = 1:4,
 y = c("hi", "hello", "jello"),
 z = c(TRUE, FALSE)
)
l

$x
[1] 1 2 3 4

$y
[1] "hi" "hello" "jello"

$z
[1] TRUE FALSE

datasciencebox.org

https://datasciencebox.org/

Lists and data frames
A data frame is a special list containing vectors of equal length
When we use the pull() function, we extract a vector from the data frame

df

x y
1 1 3
2 2 4

df %>%
 pull(y)

[1] 3 4

datasciencebox.org

https://datasciencebox.org/

Working with factors

datasciencebox.org

https://datasciencebox.org/

Read data in as character strings
glimpse(cat_lovers)

Rows: 60
Columns: 3
$ name <chr> "Bernice Warren", "Woodrow Stone", "Will~
$ number_of_cats <chr> "0", "0", "1", "3", "3", "2", "1", "1", ~
$ handedness <chr> "left", "left", "left", "left", "left", ~

datasciencebox.org

https://datasciencebox.org/

But coerce when plotting
ggplot(cat_lovers, mapping = aes(x = handedness)) +
 geom_bar()

datasciencebox.org

https://datasciencebox.org/

Use forcats to manipulate factors
cat_lovers %>%
 mutate(handedness = fct_infreq(handedness)) %>%
 ggplot(mapping = aes(x = handedness)) +
 geom_bar()

datasciencebox.org

https://datasciencebox.org/

... stay for the logo

Factors are useful when you have true categorical data and
you want to override the ordering of character vectors to
improve display
They are also useful in modeling scenarios
The forcats package provides a suite of useful tools that solve
common problems with factors

Come for the functionality

datasciencebox.org

https://datasciencebox.org/

Your turn!
RStudio > AE 05 - Hotels + Data types > hotels-forcats.Rmd > knit
Recreate the x-axis of the following plot.
Stretch goal: Recreate the y-axis.

datasciencebox.org

https://datasciencebox.org/

Working with dates

datasciencebox.org

https://datasciencebox.org/

lubridate is the tidyverse-friendly
package that makes dealing with dates
a little easier
It's not one of the core tidyverse
packages, hence it's installed with
install.packages("tidyverse)
but it's not loaded with it, and needs to
be explicitly loaded with
library(lubridate)

Make a date

datasciencebox.org

https://datasciencebox.org/

we're just going to scratch the surface of working with dates in R here...

datasciencebox.org

https://datasciencebox.org/

Calculate and Visualize the number of bookings on any given arrival date.

hotels %>%
 select(starts_with("arrival_"))

A tibble: 119,390 x 4
arrival_date_year arrival_date_month arrival_date_wee~1 arriv~2
<dbl> <chr> <dbl> <dbl>
1 2015 July 27 1
2 2015 July 27 1
3 2015 July 27 1
4 2015 July 27 1
5 2015 July 27 1
6 2015 July 27 1
... with 119,384 more rows, and abbreviated variable names
1: arrival_date_week_number, 2: arrival_date_day_of_month

datasciencebox.org

https://datasciencebox.org/

Step 1. Construct dates
library(glue)

hotels %>%
 mutate(
 arrival_date = glue("{arrival_date_year} {arrival_date_month} {arrival_date_day_of_month}")
) %>%
 relocate(arrival_date)

A tibble: 119,390 x 33
arrival~1 hotel is_ca~2 lead_~3 arriv~4 arriv~5 arriv~6 arriv~7
<glue> <chr> <dbl> <dbl> <dbl> <chr> <dbl> <dbl>
1 2015 Jul~ Reso~ 0 342 2015 July 27 1
2 2015 Jul~ Reso~ 0 737 2015 July 27 1
3 2015 Jul~ Reso~ 0 7 2015 July 27 1
4 2015 Jul~ Reso~ 0 13 2015 July 27 1
...

datasciencebox.org

https://datasciencebox.org/

Step 2. Count bookings per date
hotels %>%
 mutate(arrival_date = glue("{arrival_date_year} {arrival_date_month} {arrival_date_day_of_month
 count(arrival_date)

A tibble: 793 x 2
arrival_date n
<glue> <int>
1 2015 August 1 110
2 2015 August 10 207
3 2015 August 11 117
4 2015 August 12 133
5 2015 August 13 107
6 2015 August 14 329
... with 787 more rows

datasciencebox.org

https://datasciencebox.org/

Step 3. Visualize bookings per date
hotels %>%
 mutate(arrival_date = glue("{arrival_date_year} {arrival_date_month} {arrival_date_day_of_month
 count(arrival_date) %>%
 ggplot(aes(x = arrival_date, y = n, group = 1)) +
 geom_line()

datasciencebox.org

https://datasciencebox.org/

zooming in a bit...

Why does the plot start with August when we know our data start in July? And why does 10
August come after 1 August?

datasciencebox.org

https://datasciencebox.org/

Step 1. REVISED Construct dates "as dates"
library(lubridate)

hotels %>%
 mutate(
 arrival_date = ymd(glue("{arrival_date_year} {arrival_date_month} {arrival_date_day_of_month}
) %>%
 relocate(arrival_date)

A tibble: 119,390 x 33
arrival_date hotel is_ca~1 lead_~2 arriv~3 arriv~4 arriv~5
<date> <chr> <dbl> <dbl> <dbl> <chr> <dbl>
1 2015-07-01 Resort Ho~ 0 342 2015 July 27
2 2015-07-01 Resort Ho~ 0 737 2015 July 27
3 2015-07-01 Resort Ho~ 0 7 2015 July 27
4 2015-07-01 Resort Ho~ 0 13 2015 July 27
...

datasciencebox.org

https://datasciencebox.org/

Step 2. Count bookings per date
hotels %>%
 mutate(arrival_date = ymd(glue("{arrival_date_year} {arrival_date_month} {arrival_date_day_of_m
 count(arrival_date)

A tibble: 793 x 2
arrival_date n
<date> <int>
1 2015-07-01 122
2 2015-07-02 93
3 2015-07-03 56
4 2015-07-04 88
5 2015-07-05 53
6 2015-07-06 75
... with 787 more rows

datasciencebox.org

https://datasciencebox.org/

Step 3a. Visualize bookings per date
hotels %>%
 mutate(arrival_date = ymd(glue("{arrival_date_year} {arrival_date_month} {arrival_date_day_of_m
 count(arrival_date) %>%
 ggplot(aes(x = arrival_date, y = n, group = 1)) +
 geom_line()

datasciencebox.org

https://datasciencebox.org/

Step 3b. Visualize using a smooth curve
hotels %>%
 mutate(arrival_date = ymd(glue("{arrival_date_year} {arrival_date_month} {arrival_date_day_of_m
 count(arrival_date) %>%
 ggplot(aes(x = arrival_date, y = n, group = 1)) +
 geom_smooth()

datasciencebox.org

https://datasciencebox.org/

