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Data classes
We talked about types so far, next we'll introduce the concept of classes

Vectors are like Lego building blocks
We stick them together to build more complicated constructs, e.g. representations of data
The class attribute relates to the S3 class of an object which determines its behaviour

You don't need to worry about what S3 classes really mean, but you can read more
about it here if you're curious

Examples: factors, dates, and data frames
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Factors
R uses factors to handle categorical variables, variables that have a fixed and known set of
possible values

x <- factor(c("BS", "MS", "PhD", "MS"))
x

## [1] BS  MS  PhD MS 
## Levels: BS MS PhD
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typeof(x)

## [1] "integer"

class(x)

## [1] "factor"

Factors
R uses factors to handle categorical variables, variables that have a fixed and known set of
possible values

x <- factor(c("BS", "MS", "PhD", "MS"))
x

## [1] BS  MS  PhD MS 
## Levels: BS MS PhD
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More on factors
We can think of factors like character (level labels) and an integer (level numbers) glued
together

glimpse(x)

##  Factor w/ 3 levels "BS","MS","PhD": 1 2 3 2

as.integer(x)

## [1] 1 2 3 2
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Dates
y <- as.Date("2020-01-01")
y

## [1] "2020-01-01"

typeof(y)

## [1] "double"

class(y)

## [1] "Date"
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More on dates
We can think of dates like an integer (the number of days since the origin, 1 Jan 1970) and an
integer (the origin) glued together

as.integer(y)

## [1] 18262

as.integer(y) / 365 # roughly 50 yrs

## [1] 50.03288
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typeof(df)

## [1] "list"

class(df)

## [1] "data.frame"

Data frames
We can think of data frames like like vectors of equal length glued together

df <- data.frame(x = 1:2, y = 3:4)
df

##   x y
## 1 1 3
## 2 2 4
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Lists
Lists are a generic vector container vectors of any type can go in them

l <- list(
  x = 1:4,
  y = c("hi", "hello", "jello"),
  z = c(TRUE, FALSE)
)
l

## $x
## [1] 1 2 3 4
## 
## $y
## [1] "hi"    "hello" "jello"
## 
## $z
## [1]  TRUE FALSE
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Lists and data frames
A data frame is a special list containing vectors of equal length
When we use the pull() function, we extract a vector from the data frame

df

##   x y
## 1 1 3
## 2 2 4

df %>%
  pull(y)

## [1] 3 4
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Working with factors
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Read data in as character strings
glimpse(cat_lovers)

## Rows: 60
## Columns: 3
## $ name           <chr> "Bernice Warren", "Woodrow Stone", "Will~
## $ number_of_cats <chr> "0", "0", "1", "3", "3", "2", "1", "1", ~
## $ handedness     <chr> "left", "left", "left", "left", "left", ~
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But coerce when plotting
ggplot(cat_lovers, mapping = aes(x = handedness)) +
  geom_bar()
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Use forcats to manipulate factors
cat_lovers %>%
  mutate(handedness = fct_infreq(handedness)) %>%
  ggplot(mapping = aes(x = handedness)) +
  geom_bar()
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... stay for the logo

Factors are useful when you have true categorical data and
you want to override the ordering of character vectors to
improve display
They are also useful in modeling scenarios
The forcats package provides a suite of useful tools that solve
common problems with factors

Come for the functionality
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Your turn!
RStudio > AE 05 - Hotels + Data types > hotels-forcats.Rmd > knit
Recreate the x-axis of the following plot.
Stretch goal: Recreate the y-axis.
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Working with dates
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lubridate is the tidyverse-friendly
package that makes dealing with dates
a little easier
It's not one of the core tidyverse
packages, hence it's installed with
install.packages("tidyverse)
but it's not loaded with it, and needs to
be explicitly loaded with
library(lubridate)

Make a date
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we're just going to scratch the surface of working with dates in R here...
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Calculate and Visualize the number of bookings on any given arrival date.

hotels %>%
  select(starts_with("arrival_"))

## # A tibble: 119,390 x 4
##   arrival_date_year arrival_date_month arrival_date_wee~1 arriv~2
##               <dbl> <chr>                           <dbl>   <dbl>
## 1              2015 July                               27       1
## 2              2015 July                               27       1
## 3              2015 July                               27       1
## 4              2015 July                               27       1
## 5              2015 July                               27       1
## 6              2015 July                               27       1
## # ... with 119,384 more rows, and abbreviated variable names
## #   1: arrival_date_week_number, 2: arrival_date_day_of_month
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Step 1. Construct dates
library(glue)

hotels %>%
  mutate(
    arrival_date = glue("{arrival_date_year} {arrival_date_month} {arrival_date_day_of_month}")
    ) %>% 
  relocate(arrival_date)

## # A tibble: 119,390 x 33
##   arrival~1 hotel is_ca~2 lead_~3 arriv~4 arriv~5 arriv~6 arriv~7
##   <glue>    <chr>   <dbl>   <dbl>   <dbl> <chr>     <dbl>   <dbl>
## 1 2015 Jul~ Reso~       0     342    2015 July         27       1
## 2 2015 Jul~ Reso~       0     737    2015 July         27       1
## 3 2015 Jul~ Reso~       0       7    2015 July         27       1
## 4 2015 Jul~ Reso~       0      13    2015 July         27       1
...
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Step 2. Count bookings per date
hotels %>%
  mutate(arrival_date = glue("{arrival_date_year} {arrival_date_month} {arrival_date_day_of_month
  count(arrival_date)

## # A tibble: 793 x 2
##   arrival_date       n
##   <glue>         <int>
## 1 2015 August 1    110
## 2 2015 August 10   207
## 3 2015 August 11   117
## 4 2015 August 12   133
## 5 2015 August 13   107
## 6 2015 August 14   329
## # ... with 787 more rows
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Step 3. Visualize bookings per date
hotels %>%
  mutate(arrival_date = glue("{arrival_date_year} {arrival_date_month} {arrival_date_day_of_month
  count(arrival_date) %>%
  ggplot(aes(x = arrival_date, y = n, group = 1)) +
  geom_line()
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zooming in a bit...

Why does the plot start with August when we know our data start in July? And why does 10
August come after 1 August?
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Step 1. REVISED Construct dates "as dates"
library(lubridate)

hotels %>%
  mutate(
    arrival_date = ymd(glue("{arrival_date_year} {arrival_date_month} {arrival_date_day_of_month}
    ) %>% 
  relocate(arrival_date)

## # A tibble: 119,390 x 33
##   arrival_date hotel      is_ca~1 lead_~2 arriv~3 arriv~4 arriv~5
##   <date>       <chr>        <dbl>   <dbl>   <dbl> <chr>     <dbl>
## 1 2015-07-01   Resort Ho~       0     342    2015 July         27
## 2 2015-07-01   Resort Ho~       0     737    2015 July         27
## 3 2015-07-01   Resort Ho~       0       7    2015 July         27
## 4 2015-07-01   Resort Ho~       0      13    2015 July         27
...
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Step 2. Count bookings per date
hotels %>%
  mutate(arrival_date = ymd(glue("{arrival_date_year} {arrival_date_month} {arrival_date_day_of_m
  count(arrival_date)

## # A tibble: 793 x 2
##   arrival_date     n
##   <date>       <int>
## 1 2015-07-01     122
## 2 2015-07-02      93
## 3 2015-07-03      56
## 4 2015-07-04      88
## 5 2015-07-05      53
## 6 2015-07-06      75
## # ... with 787 more rows
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Step 3a. Visualize bookings per date
hotels %>%
  mutate(arrival_date = ymd(glue("{arrival_date_year} {arrival_date_month} {arrival_date_day_of_m
  count(arrival_date) %>%
  ggplot(aes(x = arrival_date, y = n, group = 1)) +
  geom_line()
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Step 3b. Visualize using a smooth curve
hotels %>%
  mutate(arrival_date = ymd(glue("{arrival_date_year} {arrival_date_month} {arrival_date_day_of_m
  count(arrival_date) %>%
  ggplot(aes(x = arrival_date, y = n, group = 1)) +
  geom_smooth()
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