Data classes

Data Science in a Box
datasciencebox.org

https://datasciencebox.org/

Data classes

Qdatasciencebox.org

https://datasciencebox.org/

Data classes

We talked about types so far, next we'll introduce the concept of classes

= Vectors are like Lego building blocks

Qdatasciencebox.org

https://datasciencebox.org/

Data classes

We talked about types so far, next we'll introduce the concept of classes

= Vectors are like Lego building blocks
= We stick them together to build more complicated constructs, e.g. representations of data

Qdatasciencebox.org

https://datasciencebox.org/

Data classes

We talked about types so far, next we'll introduce the concept of classes

= Vectors are like Lego building blocks
= We stick them together to build more complicated constructs, e.g. representations of data
= The class attribute relates to the S3 class of an object which determines its behaviour
= You don't need to worry about what S3 classes really mean, but you can read more
about it here if you're curious

/’I@

N o
PP datasciencebox.org

https://adv-r.hadley.nz/s3.html#s3-classes
https://datasciencebox.org/

Data classes

We talked about types so far, next we'll introduce the concept of classes

= Vectors are like Lego building blocks
= We stick them together to build more complicated constructs, e.g. representations of data
= The class attribute relates to the S3 class of an object which determines its behaviour
= You don't need to worry about what S3 classes really mean, but you can read more
about it here if you're curious
= Examples: factors, dates, and data frames

/’I@

N o
PP datasciencebox.org

https://adv-r.hadley.nz/s3.html#s3-classes
https://datasciencebox.org/

Factors

R uses factors to handle categorical variables, variables that have a fixed and known set of
possible values

x <- factor(c("BS", "MS", "PhD", "MS"))

X

[1] BS MS PhD MS
Levels: BS MS PhD

/fl@

N .
PP datasciencebox.org

https://datasciencebox.org/

Factors

R uses factors to handle categorical variables, variables that have a fixed and known set of
possible values

x <- factor(c("BS", "MS", "PhD", "MS"))

X

[1] BS MS PhD MS
Levels: BS MS PhD

[1] "integer" ## [1] "factor"

/fl@

N .
PP datasciencebox.org

https://datasciencebox.org/

More on factors

We can think of factors like character (level labels) and an integer (level numbers) glued
together

glimpse(x)

Factor w/ 3 levels "BS","MS","PhD": 1 2 3 2

as.integer(x)

[1] 1 2 3 2

/7@

N o
PP datasciencebox.org

https://datasciencebox.org/

Dates

y <- as.Date("2020-01-01")

y

[1] "2020-01-01"

typeof(y)

[1] "double"

class(y)

[1] "Date"

/{I@

N .
PP datasciencebox.org

https://datasciencebox.org/

More on dates

We can think of dates like an integer (the number of days since the origin, 1 Jan 1970) and an
integer (the origin) glued together

as.integer(y)

[1] 18262

as.integer(y) / 365

[1] 50.03288

/7@

N o
PP datasciencebox.org

https://datasciencebox.org/

Data frames

We can think of data frames like like vectors of equal length glued together

df <- data.frame(x = 1:2, y = 3:4)

typeof(df) class(df)

[1] "1list" ## [1] "data.frame"

/7@

N o
PP datasciencebox.org

https://datasciencebox.org/

Lists

Lists are a generic vector container vectors of any type can go in them

1 <- list(
= 1:4,
c("hi", "hello", "jello"),
c(TRUE, FALSE)

[1]1 12 3 4

##

%y

[1] "hi" "hello" "jello"
#H#

##t $z

[1] TRUE FALSE

/fl@

N .
PP datasciencebox.org

https://datasciencebox.org/

Lists and data frames

= Adataframeis a special list containing vectors of equal length
= When we use the pull() function, we extract a vector from the data frame

df %>%
pull(y)

[1] 3 4

/7@

N o
PP datasciencebox.org

https://datasciencebox.org/

Working with factors

Qdatasciencebox.org

https://datasciencebox.org/

Read data in as character strings

glimpse(cat_lovers)

Rows: 60

Columns: 3

$ name <chr> "Bernice Warren", "Woodrow Stone", "Will~
$ number_ of cats <chr> "o", "o", "1", "3", "3", "2", "1", "1", ~
$ handedness <chr> "left", "left", "left", "left", "left", ~

/fl@

N .
PP datasciencebox.org

https://datasciencebox.org/

But coerce when plotting

ggplot(cat_lovers, mapping = aes(x = handedness)) +
geom_bar()

ambidextrous left
handedness

https://datasciencebox.org/

Use forcats to manipulate factors

cat_lovers %>%
mutate(handedness = fct_infreq(handedness)) %>%
ggplot(mapping = aes(x = handedness)) +
geom_bar()

left ambidextrous
handedness

https://datasciencebox.org/

Come for the functionality

... stay for the logo

= Factors are useful when you have true categorical data and
you want to override the ordering of character vectors to
improve display

= They are also useful in modeling scenarios

= The forcats package provides a suite of useful tools that solve
common problems with factors

Qdatasciencebox.org

https://datasciencebox.org/

Your turn!

= RStudio>AE 05 - Hotels + Data types>hotels-forcats.Rmd> knit
= Recreate the x-axis of the following plot.
= Stretch goal: Recreate the y-axis.

Comparison of resort and city hotel prices across months

Resort hotel prices soar in the summer while city hotel prices remain
relatively constant throughout the year

«
—
(@]
o

Hotel type

City Hotel
— Resort Hotel

—_
[
el
©
—
=
)
©
0
@)
©
—
(O]
>
8
1
()
<
=
(4]
o
=

January February March April May June July AugustSeptember December
Arrival month

https://datasciencebox.org/

Working with dates

Qdatasciencebox.org

https://datasciencebox.org/

Make a date

= lubridate is the tidyverse-friendly
package that makes dealing with dates
a little easier

= |t's not one of the coretidyverse
packages, hence it's installed with
install.packages("tidyverse)
but it's not loaded with it, and needs to
be explicitly loaded with
library(lubridate)

Qdatasciencebox.org

https://datasciencebox.org/

we're just going to scratch the surface of working with dates in R here...

N

-datasciencebox.org

Q

/fl@

Q

https://datasciencebox.org/

Calculate and Visualize the number of bookings on any given arrival date.

hotels %>%

select(starts with("arrival "))

A tibble: 119,390 x 4
arrival date year arrival date_month arrival date wee~1 arriv~2

HH# <dbl> <chr> <dbl> <dbl>
1 2015 July 27 1
2 2015 July 27 1
3 2015 July 27 1
##t 4 2015 July 27 1
5 2015 July 27 1
6 2015 July 27 1
... with 119,384 more rows, and abbreviated variable names

1: arrival _date_week_number, 2: arrival _date_day_ of _month

WV

https://datasciencebox.org/

Step 1. Construct dates

library(glue)

hotels %>%
mutate(

arrival date = glue("{arrival date_year} {arrival date month} {arrival date _day of month}")
) %>%
relocate(arrival date)

A tibble: 119,390 x 33
arrival~1 hotel is ca~2 lead ~3 arriv~4 arriv~5 arriv~6 arriv~7

<glue> <chr> <dbl> <dbl> <dbl> <chr> <dbl> <dbl>
1 2015 Jul~ Reso~ 0 342 2015 July 27 1
2 2015 Jul~ Reso~ 0 VEY 2015 July 27 1
3 2015 Jul~ Reso~ 0 7 2015 July 27 1
4 2015 Jul~ Reso~ 0 13 2015 July 27 1

N

P datasciencebox.org

Q)

/7@

https://datasciencebox.org/

Step 2. Count bookings per date

hotels %>%
mutate(arrival date = glue("{arrival date _year} {arrival date_month} {arrival date_day of mont

count(arrival date)

A tibble: 793 x 2

arrival_date n
<glue> <int>
1 2015 August 1 110
2 2015 August 10 207
3 2015 August 11 117
4 2015 August 12 133
5 2015 August 13 107
6 2015 August 14 329
HHt # . with 787 more rows

N

P datasciencebox.org

Q)

/7@

https://datasciencebox.org/

Step 3. Visualize bookings per date

hotels %>%
mutate(arrival date = glue("{arrival date _year} {arrival date_month} {arrival date_day of mont
count(arrival _date) %>%
ggplot(aes(x = arrival date, y = n, group = 1)) +
geom_line()

arrival_date

https://datasciencebox.org/

zooming 1n a bit...

Why does the plot start with August when we know our data start in July? And why does 10
August come after 1 August?

300 -
250 -
c

200 -

150 -

100 - . : . | | | '
2015 AugusR015 August2®5 August20115 August2@15 August2B15 August2@ 5 August 15

arrival_date

https://datasciencebox.org/

Step 1. REVISED Construct dates "as dates"

library(lubridate)

hotels %>%
mutate(

arrival date = ymd(glue("{arrival date_year} {arrival date month} {arrival date day of month
) %>%
relocate(arrival date)

A tibble: 119,390 x 33

arrival date hotel is ca~1 lead ~2 arriv~3 arriv~4 arriv-~5
<date> <chr> <dbl> <dbl> <dbl> <chr> <dbl>
1 2015-07-01 Resort Ho~ 0 342 2015 July 27
2 2015-07-01 Resort Ho~ 0 VEY 2015 July 27
3 2015-07-01 Resort Ho~ 0 7 2015 July 27
4 2015-07-01 Resort Ho~ 0 13 2015 July 27

N

P datasciencebox.org

Q)

/7@

https://datasciencebox.org/

Step 2. Count bookings per date

hotels %>%
mutate(arrival date = ymd(glue("{arrival date year} {arrival_date_month} {arrival date_day of

count(arrival date)

A tibble: 793 x 2

arrival date n
H## <date> <int>
1 2015-07-01 122
2 2015-07-02 93
3 2015-07-03 56
4 2015-07-04 88
5 2015-07-05 53
6 2015-07-06 75
H#it # . with 787 more rows

N

P datasciencebox.org

Q)

/7@

https://datasciencebox.org/

Step 3a. Visualize bookings per date

hotels %>%
mutate(arrival date = ymd(glue("{arrival date year} {arrival_date_month} {arrival date_day of
count(arrival date) %>%
ggplot(aes(x = arrival date, y = n, group = 1)) +
geom_line()

2015-07 2016-01 2016-07 2017-01 2017-07
arrival_date

N .
Hm.datasaencebox.org

https://datasciencebox.org/

Step 3b. Visualize using a smooth curve

hotels %>%

mutate(arrival date = ymd(glue("{arrival date year} {arrival_date_month} {arrival date_day of
count(arrival date) %>%

ggplot(aes(x = arrival date, y = n, group = 1)) +
geom_smooth()
200 -
175 -
C 150 -
125 -
100 -

2015-07 2016-01 2016-07 2017-01 2017-07
arrival_date

N .
Hm.datasaencebox.org

https://datasciencebox.org/

