# Simpson's paradox

#### **Data Science in a Box** datasciencebox.org



# Case study: Berkeley admission data



### **Berkeley admission data**

- Study carried out by the Graduate Division of the University of California, Berkeley in the early 70's to evaluate whether there was a gender bias in graduate admissions.
- The data come from six departments. For confidentiality we'll call them A-F.
- We have information on whether the applicant was male or female and whether they were admitted or rejected.
- First, we will evaluate whether the percentage of males admitted is indeed higher than females, overall. Next, we will calculate the same percentage for each department.



#### Data

| ## | # / | A tibble:     | 4,526       | x 3                              |      |
|----|-----|---------------|-------------|----------------------------------|------|
| ## |     | admit         | gende       | r dep                            | ot   |
| ## |     | <fct></fct>   | <fct></fct> | <or< td=""><td>rd&gt;</td></or<> | rd>  |
| ## | 1   | Admitted      | Male        | Α                                |      |
| ## | 2   | Admitted      | Male        | Α                                |      |
| ## | 3   | Admitted      | Male        | Α                                |      |
| ## | 4   | Admitted      | Male        | А                                |      |
| ## | 5   | Admitted      | Male        | А                                |      |
| ## | 6   | Admitted      | Male        | А                                |      |
| ## | 7   | Admitted      | Male        | А                                |      |
| ## | 8   | Admitted      | Male        | А                                |      |
| ## | 9   | Admitted      | Male        | А                                |      |
| ## | 10  | Admitted      | Male        | А                                |      |
| ## | 11  | Admitted      | Male        | А                                |      |
| ## | 12  | Admitted      | Male        | А                                |      |
| ## | 13  | Admitted      | Male        | А                                |      |
| ## | 14  | Admitted      | Male        | А                                |      |
| ## | 15  | Admitted      | Male        | Α                                |      |
| ## | # . | with <i>•</i> | 4,511 ı     | nore                             | rows |

| ## | # | A tibble: 2 x 2                    |
|----|---|------------------------------------|
| ## |   | gender n                           |
| ## |   | <fct> <int></int></fct>            |
| ## | 1 | Female 1835                        |
| ## | 2 | Male 2691                          |
|    |   |                                    |
| ## | # | A tibble: 6 x 2                    |
| ## |   | dept n                             |
| ## |   | <pre><ord> <int></int></ord></pre> |
| ## | 1 | A 933                              |
| ## | 2 | B 585                              |
| ## | 3 | C 918                              |
| ## | 4 | D 792                              |
| ## | 5 | E 584                              |
| ## | 6 | F 714                              |
|    |   |                                    |
| ## | # | A tibble: 2 x 2                    |
| ## |   | admit n                            |
| ## |   | <fct> <int></int></fct>            |
| ## | 1 | Rejected 2771                      |
| ## | 2 | Admitted 1755                      |



What can you say about the overall gender distribution? Hint: Calculate the following probabilities: P(AdmitgiventheyareMale) and P(AdmitgiventheyareFemale).

ucbadmit %>%
 count(gender, admit)

## # A tibble: 4 x 3 gender admit ## n ## <fct> <fct> <int> 1 Female Rejected 1278 ## 2 Female Admitted 557 ## Rejected 1493 ## 3 Male Admitted ## 4 Male 1198



ucbadmit %>%
 count(gender, admit) %>%
 group\_by(gender) %>%
 mutate(prop\_admit = n / sum(n))

| ## | # | A tibb]     | le: 4 x 4   |             |                       |
|----|---|-------------|-------------|-------------|-----------------------|
| ## | # | Groups      | : gender    | · [2]       |                       |
| ## |   | gender      | admit       | n           | <pre>prop_admit</pre> |
| ## |   | <fct></fct> | <fct></fct> | <int></int> | <dbl></dbl>           |
| ## | 1 | Female      | Rejected    | 1278        | 0.696                 |
| ## | 2 | Female      | Admitted    | 557         | 0.304                 |
| ## | 3 | Male        | Rejected    | 1493        | 0.555                 |
| ## | 4 | Male        | Admitted    | 1198        | 0.445                 |

- P(AdmitgiventheyareFemale) = 0.304
- P(AdmitgiventheyareMale) = 0.445



#### **Overall gender distribution**

Plot Code





#### **Overall gender distribution**

Plot Code



#### What can you say about the gender distribution by department?

ucbadmit %>%
 count(dept, gender, admit)

## # A tibble: 24 x 4 ## dept gender admit n <ord> <fct> <fct> ## <int> Female Rejected ## 1 A 19 Female Admitted 89 ## 2 A ## 3 A Male Rejected 313 ## 4 <u>A</u> Male Admitted 512 Female Rejected ## 5 B 8 ## 6 B Female Admitted 17 ## # ... with 18 more rows



#### Let's try again... What can you say about the gender distribution by department?

ucbadmit %>%
 count(dept, gender, admit) %>%
 pivot\_wider(names\_from = dept, values\_from = n)

#### ## # A tibble: 4 x 8 Α ## gender admit В С D Ε F <fct> <fct> <int> <int > <in ## ## 1 Female Rejected 19 8 391 244 299 317 ## 2 Female Admitted 89 17 202 131 94 24 ## 3 Male Rejected 313 207 205 279 138 351 Admitted ## 4 Male 512 353 120 138 53 22

#### Gender distribution, by department

Plot Code





#### Gender distribution, by department

Plot Code



#### **Case for gender discrimination?**







#### **Closer look at departments**

Output Code

| ## | # / | A tibb      | le: 12 x 5  | 5             |             |             |
|----|-----|-------------|-------------|---------------|-------------|-------------|
| ## | # ( | Groups      | : dept,     | gender [12]   |             |             |
| ## |     | dept        | gender n_   | _admitted n_a | pplied      | prop_admit  |
| ## |     | <ord></ord> | <fct></fct> | <int></int>   | <int></int> | <dbl></dbl> |
| ## | 1   | А           | Female      | 89            | 108         | 0.824       |
| ## | 2   | А           | Male        | 512           | 825         | 0.621       |
| ## | 3   | В           | Female      | 17            | 25          | 0.68        |
| ## | 4   | В           | Male        | 353           | 560         | 0.630       |
| ## | 5   | С           | Female      | 202           | 593         | 0.341       |
| ## | 6   | С           | Male        | 120           | 325         | 0.369       |
| ## | 7   | D           | Female      | 131           | 375         | 0.349       |
| ## | 8   | D           | Male        | 138           | 417         | 0.331       |
| ## | 9   | E           | Female      | 94            | 393         | 0.239       |
| ## | 10  | E           | Male        | 53            | 191         | 0.277       |
| ## | 11  | F           | Female      | 24            | 341         | 0.0704      |
| ## | 12  | F           | Male        | 22            | 373         | 0.0590      |



#### **Closer look at departments**

Output

Code

```
ucbadmit %>%
  count(dept, gender, admit) %>%
  group_by(dept, gender) %>%
  mutate(
    n_applied = sum(n),
    prop_admit = n / n_applied
    ) %>%
  filter(admit == "Admitted") %>%
  rename(n_admitted = n) %>%
  select(-admit) %>%
  print(n = 12)
```



# Simpson's paradox



#### **Relationship between two variables**

A tibble: 8 x 3 ## # ## Х y z <dbl> <dbl> <chr> ## ## 1 4 A 2 3 ## 2 3 A ## 3 4 2 A 5 ## 4 1 A ## 5 6 11 B ## 6 10 B 7 ... with 2 more rows ## #





#### **Relationship between two variables**

| ## | # | A tib       | ble: 8                                         | 3 x 3         |
|----|---|-------------|------------------------------------------------|---------------|
| ## |   | х           | <u>ک</u>                                       | / Z           |
| ## |   | <dbl></dbl> | <dbl;< td=""><td>&gt; <chr></chr></td></dbl;<> | > <chr></chr> |
| ## | 1 | 2           | <b>∠</b>                                       | 1 A           |
| ## | 2 | 3           | 3                                              | 3 A           |
| ## | 3 | 4           |                                                | 2 A           |
| ## | 4 | 5           | 1                                              | LA            |
| ## | 5 | 6           | 11                                             | LB            |
| ## | 6 | 7           | 16                                             | ) B           |
| ## | # | ••• W       | ith 2                                          | more row      |
|    |   |             |                                                |               |





#### **Considering a third variable**

| ## | # | A tib       | ole: 8      | x 3                                      |              |
|----|---|-------------|-------------|------------------------------------------|--------------|
| ## |   | Х           | У           | Z                                        |              |
| ## |   | <dbl></dbl> | <dbl></dbl> | <chr< td=""><td><b>`&gt;</b></td></chr<> | <b>`&gt;</b> |
| ## | 1 | 2           | 4           | A                                        |              |
| ## | 2 | 3           | 3           | Α                                        |              |
| ## | 3 | 4           | 2           | A                                        |              |
| ## | 4 | 5           | 1           | . A                                      |              |
| ## | 5 | 6           | 11          | B                                        |              |
| ## | 6 | 7           | 10          | B                                        |              |
| ## | # | wi          | ith 2       | more                                     | row          |
|    |   |             |             |                                          |              |





#### **Relationship between three variables**

| ## | # | A tibb      | ole: 8      | x 3                                      |              |
|----|---|-------------|-------------|------------------------------------------|--------------|
| ## |   | Х           | У           | Z                                        |              |
| ## |   | <dbl></dbl> | <dbl></dbl> | <chr< td=""><td><b>`&gt;</b></td></chr<> | <b>`&gt;</b> |
| ## | 1 | 2           | 4           | A                                        |              |
| ## | 2 | 3           | 3           | Α                                        |              |
| ## | 3 | 4           | 2           | Α                                        |              |
| ## | 4 | 5           | 1           | Α                                        |              |
| ## | 5 | 6           | 11          | В                                        |              |
| ## | 6 | 7           | 10          | В                                        |              |
| ## | # | wi          | th 2        | more                                     | row          |
|    |   |             |             |                                          |              |





## **Simpson's paradox**

- Not considering an important variable when studying a relationship can result in Simpson's paradox
- Simpson's paradox illustrates the effect that omission of an explanatory variable can have on the measure of association between another explanatory variable and a response variable
- The inclusion of a third variable in the analysis can change the apparent relationship between the other two variables



# Aside: group\_by() and count()



## What does group\_by() do?

S

group\_by() takes an existing data frame and converts it into a grouped data frame where subsequent operations are performed "once per group"

#### ucbadmit

| ## | # | A tibble:   | 4,526       | x 3         |    |
|----|---|-------------|-------------|-------------|----|
| ## |   | admit       | gender      | dept        |    |
| ## |   | <fct></fct> | <fct></fct> | <ord></ord> |    |
| ## | 1 | Admitted    | Male        | А           |    |
| ## | 2 | Admitted    | Male        | А           |    |
| ## | 3 | Admitted    | Male        | А           |    |
| ## | 4 | Admitted    | Male        | А           |    |
| ## | 5 | Admitted    | Male        | А           |    |
| ## | 6 | Admitted    | Male        | А           |    |
| ## | # | with        | 4,520       | more r      | OW |

#### ucbadmit %>% group\_by(gender)

- ## # A tibble: 4,526 x 3 ## # Groups: gender [2] admit gender dept ## <fct> <fct> <ord> ## ## 1 Admitted Male Α ## 2 Admitted Male Α ## 3 Admitted Male Α 4 Admitted Male Α 5 Admitted Male ## Α 6 Admitted Male ## Α
- ## # ... with 4,520 more rows



### What does group\_by() not do?

group\_by() does not sort the data, arrange() does

١S

ucbadmit %>%
group\_by(gender)

| ## | # | A tibble:   | : 4,526     | 5 x 3                            |     |
|----|---|-------------|-------------|----------------------------------|-----|
| ## | # | Groups:     | gende       | er [2]                           |     |
| ## |   | admit       | gender      | • dept                           |     |
| ## |   | <fct></fct> | <fct></fct> | <ord< td=""><td>&gt;</td></ord<> | >   |
| ## | 1 | Admitted    | Male        | А                                |     |
| ## | 2 | Admitted    | Male        | А                                |     |
| ## | 3 | Admitted    | Male        | А                                |     |
| ## | 4 | Admitted    | Male        | А                                |     |
| ## | 5 | Admitted    | Male        | А                                |     |
| ## | 6 | Admitted    | Male        | А                                |     |
| ## | # | with        | 4,520       | more                             | rov |

ucbadmit %>%
 arrange(gender)

## # A tibble: 4,526 x 3
## admit gender dept
## <fct> <fct> <ord>
## 1 Admitted Female A
## 2 Admitted Female A
## 3 Admitted Female A
## 4 Admitted Female A
## 5 Admitted Female A
## 6 Admitted Female A
## 6 Admitted Female A
## 4 ... with 4,520 more rows



## What does group\_by() not do?

٧S

group\_by() does not create frequency tables, count() does

ucbadmit %>%
group\_by(gender)

| ## | # | A tibble:   | : 4,526     | 5 x 3                            |     |
|----|---|-------------|-------------|----------------------------------|-----|
| ## | # | Groups:     | gende       | er [2]                           |     |
| ## |   | admit       | gender      | • dept                           | -   |
| ## |   | <fct></fct> | <fct></fct> | <orc< td=""><td>&gt;</td></orc<> | >   |
| ## | 1 | Admitted    | Male        | А                                |     |
| ## | 2 | Admitted    | Male        | А                                |     |
| ## | 3 | Admitted    | Male        | А                                |     |
| ## | 4 | Admitted    | Male        | А                                |     |
| ## | 5 | Admitted    | Male        | А                                |     |
| ## | 6 | Admitted    | Male        | А                                |     |
| ## | # | with        | 4,520       | more                             | roi |

ucbadmit %>%
 count(gender)

## # A tibble: 2 x 2
## gender n
## <fct> <int>
## 1 Female 1835
## 2 Male 2691



## **Undo grouping with ungroup()**

ucbadmit %>%
 count(gender, admit) %>%
 group\_by(gender) %>%
 mutate(prop\_admit = n / sum(n)) %>%
 select(gender, prop\_admit)

| [2] |
|-----|
| -   |
| •   |
| 5   |
| ļ   |
| 5   |
| 5   |
|     |

ucbadmit %>%
 count(gender, admit) %>%
 group\_by(gender) %>%
 mutate(prop\_admit = n / sum(n)) %>%
 select(gender, prop\_admit) %>%
 ungroup()

| ## | # | A tibble: 4 | - x 2       |
|----|---|-------------|-------------|
| ## |   | gender prop | _admit      |
| ## |   | <fct></fct> | <dbl></dbl> |
| ## | 1 | Female      | 0.696       |
| ## | 2 | Female      | 0.304       |
| ## | 3 | Male        | 0.555       |
| ## | 4 | Male        | 0.445       |



#### count() is a short-hand

count() is a short-hand for group\_by() and then summarise() to count the number of observations in each group

```
ucbadmit %>%
group_by(gender) %>%
summarise(n = n())
```

```
## # A tibble: 2 x 2
## gender n
## <fct> <int>
## 1 Female 1835
## 2 Male 2691
```

ucbadmit %>% count(gender)

## # A tibble: 2 x 2
## gender n
## <fct> <int>
## 1 Female 1835
## 2 Male 2691



#### count can take multiple arguments

```
ucbadmit %>%
  group_by(gender, admit) %>%
  summarise(n = n())
```

| ## | # | A tibb]     | le: 4 x 3   |             |
|----|---|-------------|-------------|-------------|
| ## | # | Groups      | : gender    | `[2]        |
| ## |   | gender      | admit       | n           |
| ## |   | <fct></fct> | <fct></fct> | <int></int> |
| ## | 1 | Female      | Rejected    | 1278        |
| ## | 2 | Female      | Admitted    | 557         |
| ## | 3 | Male        | Rejected    | 1493        |
| ## | 4 | Male        | Admitted    | 1198        |

ucbadmit %>%
 count(gender, admit)

| ## | # | A tibb]     | Le: 4 x 3   |             |
|----|---|-------------|-------------|-------------|
| ## |   | gender      | admit       | n           |
| ## |   | <fct></fct> | <fct></fct> | <int></int> |
| ## | 1 | Female      | Rejected    | 1278        |
| ## | 2 | Female      | Admitted    | 557         |
| ## | 3 | Male        | Rejected    | 1493        |
| ## | 4 | Male        | Admitted    | 1198        |



## summarise() after group\_by()

- count() ungroups after itself
- summarise() peels off one layer of grouping by default, or you can specify a different behaviour

```
ucbadmit %>%
group_by(gender, admit) %>%
summarise(n = n())
```

```
## # A tibble: 4 x 3
  # Groups: gender [2]
##
    gender admit
##
                   n
##
    <fct> <fct>
                 <int>
  1 Female Rejected 1278
##
## 2 Female Admitted
                   557
## 3 Male Rejected 1493
## 4 Male
           Admitted
                    1198
```

